Page 248 - Microsoft Word - Дисертація.docx
P. 248
248
робиться висновок про кластерну форму розташування самих
складових частинок. Запропоновані моделі верифіковані на
експериментальних даних, взятих для зразків алюмінієвого сплаву
2024-Т3, у середовищі 0,5%NaCI [194].
На основі аналізу умов зародження та протікання росту пітингів,
згаданих вище моделей розвитку пітингової корозії обох груп можна
зробити висновок, що ріст і поширення пітингів на фрагменті поверхні
взаємно пов’язані, тому виникає необхідність розвитку стохастичних
моделей, які б поєднували обидва чинники цього процесу.
6.3. Гібридні моделі Гібса маркованих випадкових точкових
процесів.
При статистичному аналізі даних просторових точкових полів,
параметричний підхід до моделювання вимагає побудови стохастичних
моделей для точкових образів. Одним з важливих джерел моделей є
клас скінчених випадкових точкових процесів Гіббса. Багато моделей
цього класу можуть бути використані для відображення реальних
наборів даних, що містять велику кількість точок [203].
Проте, на практиці на даний час моделі Гіббса доступні для
використання в обмежений випадках. Наявні моделі парної взаємодії,
як правило, характеризуються відносно простою математичною
структурою, яка спрощує теоретичне дослідження і кодування
програмного забезпечення, але робить їх нереалістичними при
практичних застосуваннях. Найбільш часто використовувані моделі
Гіббса демонструють просторову взаємодію лише на одному рівні, в
той час як більшість природних процесів демонструють залежність на