Page 97 - Microsoft Word - Дисертація.docx
P. 97

97

                        Як вказано вище застосування схеми Гауса-Боне вимагає розбиття


                  поверхні на трикутники, що у випадку реальних зображень є складним і

                  не завжди можливим, тому запропоновано використати подібний підхід

                  для точок реального зображення.

                        Вибираючи довільні три точки в околі довільної точки зображення,

                  задаємо  множину  рівнянь  площин  [107-110].  На  основі  кожного


                  рівняння,  в  межах  околу,  визначаємо  похибку  між  значеннями

                  яскравості  та  компоненти  z  побудованої  площини.  Для  цього

                  вибираємо  відмінні  точки  околу  (рис.2.19).  Тоді  дотичною  вважаємо

                  площину, для якої похибка мінімальна. Вибравши в дотичній площині


                  два вектори v ,v  за виразом (2.5) будуємо нормаль у точці зображення.
                                      b
                                   a
                  Таким чином, кожній точці зображення ставимо у відповідність вектор,

                  який відповідає напрямку нормалі в точці поверхні.










                    Рис.2.19. Ряд способів вибору точок в околі для визначення дотичної

                    площини: світло-сірі ділянки відповідають точкам, використаним для

                           побудови площини; темно-сірі - для обчислення похибки




                        Тепер,  щоб  охарактеризувати  форму  поверхні  в  околі  точки,

                  потрібно знайти відповідність між нею і напрямками нормалей в цьому

                  околі.  Для  цього  в  площині  зображення  розглядаємо  проекцію  околу

                  точки  зображення  на  горизонтальну  площину  XY.  В  цьому  околі


                  розглядаємо  вектори,  направлені  з  точок,  які  розташовані  на  краю

                  околу  до  його  центра.  Наприклад  якщо  розглядаємо  окіл  точки

                  зображення розміром 3х3, то таких векторів буде 8. З їх допомогою для

                  точки  поверхні  формуємо  ознаку,  яка  відповідає  сумі  кутів,  що
   92   93   94   95   96   97   98   99   100   101   102