Page 10 - НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ
P. 10

8

            джерела до точки спостереження, V  – об’єм області перемагнечення.
                  Амплітудні  значення  A  сигналів  МАЕ  можна  оцінити,  використовуючи  вираз
            (8) та припустивши, що вони пропорційні переміщенню.  Враховуючи також факт,
            що    zz  ~  s M / M   (   –  константа  магнетострикції),  для  амплітуди  сигналу  МАЕ
                                 s
                                       s
            одержуємо співвідношення
                                                            m
                                                A  ~ CV          2 cos  2    /r ,                       (9)
                                                          s
                                                           M
                                                              s
                                                        
            де С – коефіцієнт пропорційності, V  – похідна за часом зміни об’єму області пере-
            магнечування,  згідно  якого  можна  прослідкувати  і  зв’язок  з  характеристиками
            досліджуваного феромагнетного матеріалу: постійними Ляме, густиною матеріалу,
            швидкістю  поширення  поздовжньої  хвилі,  намагнеченістю  насичення,  константою
            магнетострикції. Із залежності (9) випливає, що амплітудні значення сигналу МАЕ є
                                                                                                      
            пропорційними до величини трансформаційних деформацій (множник  s m/M s) та
            до швидкості зміни об’єму області перемагнечування V                  V  / t  ,  V – зміна об’єму,
                                                                                            
            що відбулася внаслідок одиничного стрибка,  t  – тривалість стрибка.
                  У розрахунках за (9) для сталевої пластини покладали:                   7800 кг/м ;      121
                                                                                       
                                                                                                       3
                                                                   
                   
            ГПа;      81 ГПа; с     6000 м/с;         , 3  48 10 ;  M   17  5 ,  10  А/м, за якими оцінили
                                                                   6
                                                                                     5
                                   1                 s                   s
            амплітудні значення сигналів МАЕ , зокрема для вибраного максимального стрибка
                                                                        1
            одержали  A=  7 , 5  10  м, для мінімального –  A=  10  м.
                                                                             
                                     
                                      15
                                                                              15
                  Проведений аналіз механізму генерування сигналу МАЕ дав змогу встановити
            взаємозв’язок між його параметрами, параметрами стрибка 90°-ної доменної стінки
            та характеристиками досліджуваного феромагнетного матеріалу, а також виокреми-
            ти  характерні  ознаки  МАЕ:  випадковість  появи  у  часі  окремих  подій  (стрибків
            доменних стінок); обмеженість у часі; випадковість розміру стрибка.
                  У третьому розділі дисертаційної роботи розвинуто математичну модель сиг-
            налу МАЕ, обґрунтовано його інформативні параметри та запропоновано алгоритми
            оцінювання. Досліджено вплив умов збудження на зміну параметрів сигналу МАЕ,
            на основі чого запропоновано та розроблено структури засобів і алгоритми стабілі-
            зації амплітуди струму перемагнечення та індукції перемагнечувального поля.
                  Результати аналізу механізму генерування сигналу МАЕ дають підставу розгля-

            дати його в рамках моделі випадкового імпульсного потоку. У цьому випадку сиг-
            нал зображається суперпозицією імпульсів, форма яких описується детермінованою
            функцією  F t ,  нормованою  на  одиницю  в  максимумі,  причому  імпульси  можуть
                            ( )
            відрізнятися за амплітудою
                                                      X ( ) t    A F ki (t t   ki ).                       (10)
                                                                  ki
                                                               , k i
            Тут T – період перемагнечування, k           1,2,...– номер періоду, t  – випадковий момент
                                                                                      ki
            появи i-гo імпульсу в k-му періоді  (k          1)T   t   kT ,  i  1,2,...,  A – його випадкова
                                                                                            ki
                                                                    ki
            амплітуда; t  називають моментом появи умовно, припускається, що не обов’язково
                           ki
             F ki (t t  ki ) 0  , якщо  t t  ki . Передбачається, що  ( )F t  досить швидко прямує до нуля,

                                     
            якщо | |t      , тому     |F ki (t t  ki ) | . Моменти часу  t  можуть бути пов’язані з будь-
                                                                           ki
                                     
   5   6   7   8   9   10   11   12   13   14   15