Page 306 - КЛАСИФІКАЦІЯ ЛОКАЛІЗОВАНИХ ДЕФЕКТІВ ЗВАРНИХ ШВІВ НА РЕНТГЕНІВСЬКИХ ЗОБРАЖЕННЯХ ТРУБ
P. 306

306

               186.      Bonnin-Pascual  F.,  Ortiz  A.  Corrosion  detection  for  automated  visual

               inspection.  Chapter  25  in  book:  Developments  in  Corrosion  Protection,  Publisher:

               InTech, Ed. Mahmood Aliofkhazraei, 2014.  P. 619–632.

               187.      Chen  P.-H.,  Yang  Y.-C.,  Chang  L.-M.  Automated  bridge  coating  defect

               recognition using adaptive ellipse approach. Automation in Construction. 2009. Vol.

               18. P. 632–643.

               188.      Nash  W.,  Drummond  T.,  Birbilis  N.  Quantity  beats  quality  for  semantic

               segmentation        of     corrosion      in     images.      2018,      July     10.     URL:

               https://arxiv.org/abs/1807.03138.

               189.      Ahuja S. K., Shukla M. K., Ravulakollu K. K. Surface corrosion detection

               and classification for steel alloy using image processing and machine learning. Helix,

               2018. Vol. 8, No 5.  P. 3822–3827.

               190.      Acosta  M.R.G.,  Diaz  J.C.V.,  Castro  N.S.  An  innovative  image-processing

               model for rust detection using Perlin noise to simulate oxide textures. Cor. Sci. 2014.

               Vol. 88. P. 141–151.

               191.      Trujillo M., Sadki M. Sensitivity analysis for texture models applied to rust

               steel  classification.  Proc.  SPIE  5303,  Machine  Vision  Applications  in  Industrial

               Inspection XII, 2004.  P. 161–169.

               192.      Tsutsumi  F.,  Murata  H.,  Onoda  T.,  Oguri  O.,  Tanaka  H.  Automatic

               corrosion  estimation  using  galvanized  steel  images  on  power  transmission  towers.

               Transmission & Distribution Conference & Exposition: Asia and Pacific, 26-30 Oct.

               2009. P. 1-4.

               193.      Shen  H.-K.,  Chen  P.-H.,  Chang  L.-M.  Human-visual-perception-like

               intensity recognition for color rust images based on artificial neural network. Autom.

               Constr. 2018.  Vol. 90. 178-187.

               194. Fabris-Rotelli I., Greeff J.F. The application of the iterated conditional modes to

               feature vectors  of  the  Discrete  Pulse  Transform  of  images. In:  De  Waal, A. (eds.)

               Proceedings of the 23nd Annual Symposium of the Pattern Recognition Association

               of South Africa 2012, pp 149 - 156.
   301   302   303   304   305   306   307   308   309   310   311