Page 304 - КЛАСИФІКАЦІЯ ЛОКАЛІЗОВАНИХ ДЕФЕКТІВ ЗВАРНИХ ШВІВ НА РЕНТГЕНІВСЬКИХ ЗОБРАЖЕННЯХ ТРУБ
P. 304
304
168. Maeda K., Takahashi S., Ogawa T., Haseyama M. Estimation of
deterioration levels of transmission towers via deep learning maximizing canonical
correlation between heterogeneous features. IEEE J. of Select. Top. in Signal
Process. 2018. No 12 P. 633-644.
169. Valeti B., Pakzad S. Automated detection of corrosion damage in power
transmission lattice towers using image processing. Structures Congress, April 6–8,
2017, Denver, Colorado. 2017. P. 474-481.
170. Son H., Hwang N., Kim C. Rapid and automated determination of rusted
surface areas of a steel bridge for robotic maintenance systems. Autom. Constr. 2014.
No 42. P. 13–24.
171. Böttger T., Ulrich M. Real-time texture error detection on textured surfaces
with compressed sensing. Pattern Recognition and Image Analysis. 2016. No 26. P.
88–94.
172. Petricca L., Moss T., Figueroa G., Broen S. Corrosion detection using A.I: a
comparison of standard computer vision techniques and deep learning model. Comp.
Sci. Inform. Tech. 2016. No 6. P. 91–99.
173. Igoe D., Parisi A. V. Characterization of the corrosion of iron using a
smartphone camera. Instrument. Sci. Tech. 2016. No 44. P. 139–147.
174. Shen H.K., Chen P.H., Lei C.Y., Chang L.M. Support-vector-machine-based
method for automated steel bridge rust assessment. Autom. Constr. 2012. Vol. 23. P.
9–19.
175. Shen H.K., Chen P.H., Chang L.M. Automated steel bridge coating rust
defect recognition method based on colour and texture feature. Autom. Constr. 2013.
Vol. 31. 338–356.
176. Enikeev M., Gubaydullin I., Maleeva M., Analysis of corrosion process
development on metals by means of computer vision. Engineering Journal. 2017.
Vol. 21, No 4. P. 183–192.