Page 305 - КЛАСИФІКАЦІЯ ЛОКАЛІЗОВАНИХ ДЕФЕКТІВ ЗВАРНИХ ШВІВ НА РЕНТГЕНІВСЬКИХ ЗОБРАЖЕННЯХ ТРУБ
P. 305
305
177. Livens S., Scheunders P., Wouwer G.V.D., Dyck D., Smets H., Winkelmans
J., Bogaerts W. A texture analysis approach to corrosion image classification.
Microsc. Microanal. Microstruct. 1996. No 7. P. 143–152.
178. Bondada V., Pratihar D.K., Kumar C.S. Detection and quantitative
assessment of corrosion on pipelines through image analysis. Procedia Comp. Sci.
2018. Vol. 133. P. 804–811.
179. Medeiros F.N.S., Ramalho G.L.B., Bento M.P., Medeiros L.C.L. On the
evaluation of texture and color features for nondestructive corrosion detection
EURASIP J. Adv. Signal Process. 2010. Article ID 817473.
180. Huynh C. P., Mustapha S., Runcie P., Porikli F., Multi-class support vector
machines for paint condition assessment on the Sydney Harbour Bridge using hyper
spectral imaging. Structural Monitoring and Maintenance. 2015. No 2. P. 181–197.
181. Pidiparti R. M., Hinderliter B., Maskey D. Evaluation of corrosion growth
on SS304 based on textural and color features from image analysis. ISRN Corr. 2013.
Article ID 376823. 7 p.
182. Li H., Garvan M.R., Li J., Echauz J., Brown D., Vachtsevanos G.J. Imaging
and information processing of pitting-corroded aluminum alloy panels with surface
metrology methods. Annual Conf. of the prognostics and health management society.
September 19, 2014. 11 p.
183. Itzhak D., Dinstein I., Zilberberg T., Pitting corrosion evaluation by
computer image processing. Corr. Sci. 1981. Vol. 21, No 1. P.17–22.
184. Sharma V., Thind T. Techniques for detection of rusting of metals using
image processing: a survey. International Journal of Emerging Science and
Engineering. 2013. Vol. 1, No 4. P.60–62.
185. Liu L., Tan E., Cai Z.Q., Yin X.J., Zhen Y. CNN-based automatic coating
Inspection System. Advances in Science, Technology and Engineering Systems
Journal. 2018. Vol. 3, No 6. 469–478.