Page 174 -
P. 174
132. Jia, Y., Yao, X.: Carbon scaffold modified by metal (Ni) or non-metal (N) to
enhance hydrogen storage of MgH through nanoconfinement. Int. J. Hydrogen
2
Energy 42(36), 22933–22941 (2017). doi: 10.1016/j.ijhydene.2017.07.106
133. Meijia, L., Shuchun, Z., Xuezhang, X., Man, Ch., Chenghua, S., Zhendong, Y.,
Zhencan, H., Lixin, Ch.: Novel 1D carbon nanotubes uniformly wrapped na-
noscale MgH for efficient hydrogen storage cycling performances with extreme
2
high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019).
doi: 10.1016/j.nanoen.2019.04.094
134. Dematteis, E.M., Berti, N., Cuevas, F., Latroche, M., Baricco, M.: Substitutional
effects in TiFe for hydrogen storage: a comprehensive review. Mater. Adv., 2,
2021, 2524–2560. doi: 10.1039/D1MA00101A
135. Ouyang, L.Z., Cao, Z.J., Wang, H., Liu, J.W., Sun, D.L., Zhang, Q.A., Zhu, M.:
Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF composite
2
directly synthesized by plasma milling. J. Alloys and Compounds 586, 113–117
(2014). doi: 10.1016/j.jallcom.2013.10.029
136. El-Eskandarany, M.Sh., Shaban, E., Al-Matrouk, H., Behbehani, M., Alkandary,
A., Aldakheel, F., Ali, N., Ahmed S.A.: Structure, morphology and hydrogen
storage kinetics of nanocomposite MgH /10 wt% ZrNi powders. Materials To-
2
5
day Energy 3, 60–71 (2017). doi: 10.1016/j.mtener.2016.12.002
137. Kumar, S., Jain, A., Yamaguchi, S., Miyaoka, H., Ichikawa, T., Mukherjee, A.,
Dey, G.K., Kojima, Y.: Surface modification of MgH by ZrCl to tailor the re-
4
2
versible hydrogen storage performance. Int. J. Hydrogen Energy 42(9), 6152–
6159 (2017). doi: 10.1016/j.ijhydene.2017.01.193
138. Sandrock, G.D., Goodell, P.D.: Surface poisoning of LaNi , FeTi and (Fe,Mn)Ti
5
by O , Co and H O. J. Less Common Met. 73, 161–168 (1980). doi:
2
2
10.1016/0022-5088(80)90355-0
139. Kwon, S., Kim, M.J., Kang, S., Kim, T.: Development of a high-storage-density
hydrogen generator using solid-state NaBH as a hydrogen source for unmanned
4
aerial vehicles. Appl. Energy 251, 113331 (2019). doi:
10.1016/j.apenergy.2019.113331
174