Page 170 -
P. 170

98. Dal Toè, S., Lo Russo, S., Maddalena, A., et al.: Hydrogen desorption from mag-

                   nesium  hydride–graphite  nanocomposites  produced  by  ball  milling.  Mater  Sci.

                   and Engineer. B 108, 24–27 (2004). doi: 10.1016/j.mseb.2003.10.030

                99. Shang, C.X., Guo, Z.X.: Effect of carbon on hydrogen desorption and absorption

                   of  mechanically  milled  MgH .  J.  Power  Sources  129(1),  73–80  (2004).  doi:
                                                      2
                   10.1016/j.jpowsour.2003.11.013


                100. Lototskyy, M., Denys, R., Yartys, V., Eriksen, J., Goh, J., Cummings, F.: An
                     outstanding effect of graphite in nano-MgH -TiH  on hydrogen storage perfor-
                                                                              2
                                                                       2
                     mance. J. Mat. Chem. A 6, 10740–10754 (2018). doi: 10.1039/C8TA02969E
                101. Fuster, V.,G. Urretavizcaya, Castro,  F.J.:  Characterization  of MgH   formation
                                                                                                   2

                     by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H  at-
                                                                                                           2
                     mosphere.      J.    Alloys     and     Comp.       481,    673–680       (2009).     doi:


                     10.1016/j.jallcom.2009.03.056

                102. Fuster, V., et al.: Characterization of graphite catalytic effect in reactively ball-

                     milled MgH –C and Mg–C composites. Int. J. Hydrogen Energy 36, 9051–9061
                                   2
                     (2011). doi: 10.1016/j.ijhydene.2011.04.153

                103. Yuan, Z., Li, C., Li, T., Zhai, T., Sui, Y., Li, X., Feng, D., Zhang, Y.: Improved

                     hydrogen storage performance of Sm-Mg composites by adding nano-graphite.

                     J. Alloys and Comp. 935(2), 168144 (2023). doi: 10.1016/j.jallcom.2022.168144

                104. Imamura, H., Tabata, S., Shigetomi, N., et al.: Composites for hydrogen storage

                     by  mechanical  grinding  of  graphite  carbon  and  magnesium.  J.  Alloys  Comp.

                     330–332, 579–583 (2002). doi: 10.1016/S0925-8388(01)01506-7

                105. Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q., Cheng, H.M.: Ef-

                     fect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium

                     hydride.      J.    Alloys      Comp.       414(1–2),      259–264        (2006).     doi:

                     10.1016/j.jallcom.2005.07.021

                106. Huang, Z.G., Guo, Z.P., Calka, A., Wexler, D., Liu, H.K.: Improvement in hy-

                     drogen cycling properties of magnesium through added graphite. Materials Let-

                     ters 61(14–15), 3163–3166 (2007). doi: 10.1016/j.matlet.2006.11.017






                                                                                                            170
   165   166   167   168   169   170   171   172   173   174   175