Page 177 -
P. 177
introducing of MgCl and Si. Int. J. Hydrogen Energy 43(5), 2903–2912 (2018).
2
doi: 10.1016/j.ijhydene.2017.12.163
158. Zavaliy, I.Y., Berezovets, V.V., Oshchapovsky, I.V. et al.: Mg–TiN and Mg–
ZrN Nanocomposites as Efficient Materials for the Accumulation and Genera-
tion of Hydrogen. Mater. Sci. 57, 53–60 (2021). doi: 10.1007/s11003-021-
00514-5
159. Berezovets, V., Kytsya, A., Zavaliy, I., Yartys V.: Kinetics and mechanism of
MgH hydrolysis in MgCl solutions. Int. J. Hydrogen Energy 46(80), 40278–
2
2
40293 (2021). doi: 10.1016/j.ijhydene.2021.09.249
160. Huang, M., Ouyang, L., Wang, H., Liu, J., Zhu, M.: Hydrogen generation by
hydrolysis of MgH and enhanced kinetics performance of ammonium chloride
2
introducing. Int. J. Hydrogen Energy 40(18), 6145–50 (2015). doi:
10.1016/j.ijhydene.2015.03.058
161. Ouyang, L., Ma, M., Huang, M., Duan, R., Wang, H., Sun, L., Zhu, M.: En-
hanced hydrogen generation properties of MgH -based hydrides by breaking the
2
magnesium hydroxide passivation layer. Energies 8, 4237–4252 (2015). doi:
10.3390/en8054237
162. Kravchenko, O.V., Sevastyanova, L.G., Urvanov, S.A., Bulychev, B.M.: For-
mation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni, Co,
Cu and Fe in aqueous salt solutions. Int. J. Hydrogen Energy 39(11), 5522–7
(2014). doi: 10.1016/j.ijhydene.2014.01.181
163. Sevastyanova, L.G., Genchel, V.K., Klyamkin, S.N., Larionova, P.A., Bulychev,
B.M.: Hydrogen generation by oxidation of “mechanical alloys” of magnesium
with iron and copper in aqueous salt solutions. Int. J. of Hydrogen Energy
42(27), 16961–7 (2017). doi: 10.1016/j.ijhydene.2017.05.242
164. Alasmar, E., Awad, A.S., Hachem, D., Tayeh, T., Nakhl, M., Zakhour, M.,
Gaudin, E., Bobet, J.-L.: Hydrogen generation from Nd-Ni-Mg system by hy-
drolysis reaction. J. Alloys and Compounds 740, 52–60 (2018). doi:
10.1016/j.jallcom.2017.12.305
177