Page 173 -
P. 173
124. Zaluska, A., Zaluski, L., Strom-Olsen, J.O.: Structure, catalysis, and atomic re-
actions on the nano-scale: a systematic approach to metal hydrides for hydrogen
storage. Appl. Phys. A, 72(2), 2001, 157–165. doi: 10.1007/s003390100783
125. Bazzanella, N., Checchetto, R., Miotello, A.: Atoms and nanoparticles of transi-
tion metals as catalysts for hydrogen desorption from magnesium hydride. J.
Nanomater., 2011, 2010. doi: 10.1155/2011/865969
126. Zhang, L., Cai, Z., Yao, Z., Ji, L., Sun, Z., Yan, N., Zhang, B., Xiao, B., Du, J.,
Zhu, X., Chen, L.: A striking catalytic effect of facile synthesized ZrMn nano-
2
particles on the de/rehydrogenation properties of MgH . J. Mater. Chem. A,
2
2019, 7, 5626–5634. doi: 10.1039/C9TA00120D
127. Shahi, R.R., Tiwari, A.P., Shaz, M.A., Srivastava, O.N.: Studies on
de/rehydrogenation characteristics of nanocrystalline MgH co-catalyzed with
2
Ti, Fe, and Ni. Int. J. Hydrogen Energy, 38(6), 2013, 2778–2784. doi:
10.1016/j.ijhydene.2012.11.073
128. Shokano, G., Dehouche, Z., Galey, B., Postole, G.: Development of a Novel
Method for the Fabrication of Nanostructured Zr Ni Catalyst to Enhance the
x
y
Desorption Properties of MgH . Catalysts, 10(8), 2020, 849. doi:
2
10.3390/catal10080849
129. German, E., Gebauer, R.: Improvement of Hydrogen Vacancy Diffusion Kinet-
ics in MgH by Niobium- and Zirconium-Doping for Hydrogen Storage Appli-
2
cations. J. Phys. Chem. C, 2016, 120(9), 4806–4812. doi:
10.1021/acs.jpcc.5b12092
130. Zhang, X., Leng, Z., Gao, M., Hu, J., Du, F., Yao, J., Pan, H., Liu, Y.: Enhanced
hydrogen storage properties of MgH catalyzed with carbon supported nanocrys-
2
talline TiO . J. Power Sources, 398, 2018, 183–192. doi:
2
10.1016/j.jpowsour.2018.07.072
131. Chen, M., Xiao, X., Wang, X., Lu, Y., Zhang, M., Zheng, J., Chen, L.: Self-
templated carbon enhancing catalytic effect of ZrO nanoparticles on the excel-
2
lent dehydrogenation kinetics of MgH . Carbon, 166, 2020, 46–55. doi:
2
10.1016/j.carbon.2020.05.025
173