Page 144 - dysertaciyahembara
P. 144
178. Matsui H., Kimura H., Kimura A. Effect of hydrogen on the
mechanical-properties of high-purity iron .3. Dependence of softening on
specimen size and charging current-density// Materials Science and Engineering.
1979; 40(2) p.227-234.
179. Hajilou T., Deng Y., Rogne B.R., Kheradmand N., Barnoush A. In situ
electrochemical microcantilever bending test: A new insight into hydrogen
enhanced cracking.// Scripta Materialia. 2017; 132 p.17-21.
180. Shinko T., Henaff G., Halm D., Benoit G., Bilotta G., Arzaghi M.
Hydrogen-affected fatigue crack propagation at various loading frequencies and
gaseous hydrogen pressures in commercially pure iron// International Journal of
Fatigue. 2019; 121 p.197-207.
181. Kirchheim R. Solid solution softening and hardening by mobile solute
atoms with special focus on hydrogen// Scripta Materialia. 2012; 67(9) p.767-
770.
182. Takahashi Y., Kondo H., Asano R., Arai S., Higuchi K., Yamamoto
Y., et al. Direct evaluation of grain boundary hydrogen embrittlement: A micro-
mechanical approach// Materials Science and Engineering a-Structural Materials
Properties Microstructure and Processing. 2016; 661 p.211-216.
183. Kirchheim R. Reducing grain boundary, dislocation line and vacancy
formation energies by solute segregation II. Experimental evidence and
consequences// Acta Materialia. 2007; 55(15) p.5139-5148.
184. Kirchheim R. Reducing grain boundary, dislocation line and vacancy
formation energies by solute segregation. I. Theoretical background// Acta
Materialia. 2007; 55(15) p.5129-5138.
185. Gumbsch P. Modelling brittle and semi-brittle fracture processes//
Materials Science and Engineering a-Structural Materials Properties
Microstructure and Processing. 2001; 319 p.1-7.
186. Lee S.L., Unger D.J. A decohesion model of hydrogen assisted
cracking// Engineering Fracture Mechanics. 1988; 31(4) p.647-660.
144