Page 146 - dysertaciyahembara
P. 146
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials
Science. 2013; 44A(3) p.1209-1229.
196. Neeraj T., Srinivasan R., Li J.. Hydrogen embrittlement of ferritic
steels: Observations on deformation microstructure, nanoscale dimples and
failure by nanovoiding// Acta Materialia. 2012; 60(13-14) p.5160-5171.
197. Nagumo M., Takai K. The predominant role of strain-induced
vacancies in hydrogen embrittlement of steels: Overview// Acta Materialia. 2019;
165 p.722-733.
198. Merson E.D., Myagkikh P.N., Klevtsov G.V., Merson D.L.,
Vinogradov A. Effect of fracture mode on acoustic emission behavior in the
hydrogen embrittled low-alloy steel// Engineering Fracture Mechanics. 2019;
210 p.342-357.
199. Merson E., Danilov V., Merson D., Vinogradov A. Confocal laser
scanning microscopy: The technique for quantitative fractographic analysis//
Engineering Fracture Mechanics. 2017; 183 p.147-158.
200. Friak M., Hickel T., Grabowski B., Lymperakis L., Udyansky A., Dick
A., et al. Methodological challenges in combining quantum-mechanical and
continuum approaches for materials science applications// European Physical
Journal Plus. 2011; 126(10).
201. Makov G., Gattinoni C., De Vita A. Ab initio based multiscale
modelling for materials science// Modelling and Simulation in Materials Science
and Engineering. 2009; 17(8).
202. Koyama M., Akiyama E., Tsuzaki K., Raabe D. Hydrogen-assisted
failure in a twinning-induced plasticity steel studied under in situ hydrogen
charging by electron channeling contrast imaging// Acta Materialia. 2013; 61(12)
p. 4607-4618.
203. Wang M.Q., Akiyama E., Tsuzaki K. Effect of hydrogen and stress
concentration on the notch tensile strength of AISI 4135 steel// Materials Science
and Engineering a-Structural Materials Properties Microstructure and
Processing. 2005; 398(1-2) p.37-46.
146