Page 140 - dysertaciyahembara
P. 140
Engineering a-Structural Materials Properties Microstructure and Processing.
2015; 640) p. 72-81.
142. Dmytrakh I.A., Syrotyuk A.M., Leshchak R.L. Specific features of the
deformation and fracture of low-alloy steels in hydrogen-containing media:
influence of hydrogen concentration in the metal// Materials Science. 2018; 54(3)
p. 295-308.
143. Wang R. Effects of hydrogen on the fracture toughness of a X70
pipeline steel// Corrosion Science. 2009; 51(12) p. 2803-2810.
144. Falkenberg R., Brocks W., Dietzel W., Scheider I. Modelling the
effect of hydrogen on ductile tearing resistance of steels// International Journal
of Materials Research. 2010; 101(8) p.989-996.
145. Brocks W., Falkenberg R., Scheider I., editors. Coupling aspects in the
simulation of hydrogen-induced stress-corrosion cracking. IUTAM Symposium
on Linking Scales in Computation - From Microstructure to Macroscopic
Properties; 2011 May 17-19; Pensacola, FL2012.
146. Barrera O., Cocks A.C.F. Computational modelling of hydrogen
embrittlement in welded structures// Philosophical Magazine. 2013; 93(20)
p.2680-2700.
147. Barrera O., Tarleton E., Cocks A.C.F. A micromechanical image-
based model for the featureless zone of a Fe-Ni dissimilar weld// Philosophical
Magazine. 2014; 94(12) p.1361-1377.
148. Taketomi S., Imanishi H., Matsumoto R., Miyazaki N., editors.
Dislocation dynamics analysis of hydrogen embrittlement in alpha iron based on
atomistic investigations 2013.
149. Wang Y.F., Wang X.W., Gong J.M., Shen L.M., Dong W.N.
Hydrogen embrittlement of catholically hydrogen-precharged 304L austenitic
stainless steel: Effect of plastic pre-strain// International Journal of Hydrogen
Energy. 2014; 39(25) p. 13909-13918.
140