Page 147 - dysertaciyahembara
P. 147
204. Wang M., Akiyama E., Tsuzaki K. Effect of hydrogen on the fracture
behavior of high strength steel during slow strain rate test// Corrosion Science.
2007; 49(11) p.4081-4097.
205. Koyama M., Akiyama E., Sawaguchi T., Raabe D., Tsuzaki K.
Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C
austenitic steel// Scripta Materialia. 2012; 66(7) p.459-462.
206. Kwon Y.J., Seo H.J., Kim J.N., Lee C.S. Effect of grain boundary
engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain
rates// Corrosion Science. 2018; 142 p.213-21.
207. Maier H.J., Popp W., Kaesche H. A method to evaluate the critical
hydrogen concentration for hydrogen-induced crack-propagation// Acta
Metallurgica. 1987; 35(4) p.875-880.
208. Dmytrakh I.M., Leshchak R.L., Syrotyuk A.M. Effect of hydrogen
concentration on strain behaviour of pipeline steel// International Journal of
Hydrogen Energy. 2015; 40(10) p.4011-4018.
209. Lunarska E., Ososkov Y., Jagodzinsky Y. Correlation between critical
hydrogen concentration and hydrogen damage of pipeline steel// International
Journal of Hydrogen Energy. 1997; 22(2-3) p. 279-284.
210. Hanneken J.W. Hydrogen in metals and other materials: a
comprehensive reference to books, bibliographies, workshops and conferences//
International Journal of Hydrogen Energy. 1999; 24(10) p.1005-1026.
211. Wang M.Q., Akiyama E., Tsuzaki K. Determination of the critical
hydrogen concentration for delayed fracture of high strength steel by constant load
test and numerical calculation// Corrosion Science. 2006; 48(8) p.2189-2202.
212. Lovicu G., Bottazzi M., D'Aiuto F., De Sanctis M., Dimatteo A.,
Santus C., et al. Hydrogen Embrittlement of Automotive Advanced High-Strength
Steels// Metallurgical and Materials Transactions a-Physical Metallurgy and
Materials Science. 2012; 43A(11) p.4075-4087.
147