Page 345 - Кулик В.В.
P. 345
345
propagation in steels. Metal Science. 1975. Vol. 9, No 3. P. 119–126.
388. Yarema S.Ya., Popovich V.V., Zima Yu.V. Influence of structure on
the resistance of 65G steel to fatigue crack growth. Materials Science. 1982. Vol.
18, No 1. P. 13–26.
389. Murakami Y., Takahashi K., Kusumoto R. Threshold and growth
mechanism of fatigue cracks under mode II and III loadings. Fatigue and Fracture
of Engineering Materials and Structures. 2003. Vol. 26, No 6. P. 523–531.
390. Murakami Y., Fukushima Y., Toyama K., Matsuoka S. Fatigue crack
path and threshold in Mode II and Mode III loadings. Engineering Fracture
Mechanics. 2008. Vol. 75, No 3–4. P. 306–318.
391. Murakami Y., Fukuhara T. and Hamada S. Measurement of Mode II
threshold stress intensity range ΔK . Journal of the Society of Materials Science.
IIth
2002. Vol. 51, No 8. P. 918–925.
392. Осташ О.П., Андрейко І.М, Кулик В.В. Експлуатаційна
надійність високоміцних залізничних коліс. Залізничний транспорт України.
2013. № 5-6. С. 11-17.
393. Осташ О.П., Андрейко І.М., Кулик В.В. Спосіб оцінювання
роботоздатності колісних сталей: пат. 106836 Україна. МПК G01N 3/32,
G01N 3/56; заявл. 16.075.2013. Опубл. 10.10.2014, Бюл. № 19.
394. Mazzu A., Petrogalli C., Faccoli M. An integrated model for
competitive damage mechanisms assessment in railway wheel steels. Wear. 2015.
Vol. 322-323. P. 181–191.
395. Ostash O.P., Kulyk V.V., Lenkovskiy T.M., Duriagina Z.A., Vira
V.V., Tepla T.L. Relationships between the fatigue crack growth resistance
characteristics of a steel and the tread surface damage of railway wheel. Materials
Science and Graphene Technology: Proceedings of the International Conference
on Materials Science and Graphene Technology. (09-11 April 2018, Dubai, United
Arab Emirates). 2018. P. 32.
396. Ostash O.P., Kulyk V.V., Lenkovskiy T.M., Duriagina Z.A., Vira
V.V., Tepla T.L. Relationships between the fatigue crack growth resistance