Page 134 - dysertaciyahembara
P. 134
89. Barnoush A., Vehoff H. In situ electrochemical nanoindentation: A
technique for local examination of hydrogen embrittlement// Corrosion Science.
2008; 50(1) p. 259-267.
90. Huang H., Gerberich W.W. Crack-tip dislocation emission
arrangements for equilibrium. 2. Comparisons to analytical and computer-
simulation models// Acta Metallurgica Et Materialia. 1992; 40(11) p. 2873-2881.
91. Gerberich W. Modeling hydrogen induced damage mechanisms in
metals// Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
Vol 2 Mechanisms, Modelling and Future Developments. 2012 p. 209-246.
92. Gerberich W.W., Oriani R.A., Lii M.J., Chen X., Foecke T. The
necessity of both plasticity and brittleness in the fracture thresholds of iron//
Philosophical Magazine a-Physics of Condensed Matter Structure Defects and
Mechanical Properties. 1991; 63(2) p. 363-376.
93. Serebrinsky S., Carter E.A., Ortiz M. A quantum-mechanically
informed continuum model of hydrogen embrittlement// Journal of the Mechanics
and Physics of Solids. 2004; 52(10) p. 2403-2430.
94. Dadfarnia M., Sofronis P., Somerday B.P., Balch D.K., Schembri P.
Degradation models for hydrogen embrittlement. Gaseous Hydrogen
Embrittlement of Materials in Energy Technologies// Vol 2: Mechanisms,
Modelling and Future Developments. 2012 p. :326-377.
95. Martinez-Paneda E., Niordson C.F., Gangloff R.P. Strain gradient
plasticity-based modeling of hydrogen environment assisted cracking// Acta
Materialia. 2016; 117 p. 313-332.
96. Harris Z.D., Dolph J.D., Pioszak G.L., Troconis B.C.R., Scully J.R.,
Burns J.T. The Effect of Microstructural Variation on the Hydrogen Environment-
Assisted Cracking of Monel K-500// Metallurgical and Materials Transactions
a-Physical Metallurgy and Materials Science. 2016; 47A(7) p. 3488-3510.
97. Bal B., Sahin I., Uzun A., Canadinc D. A New Venue Toward
Predicting the Role of Hydrogen Embrittlement on Metallic Materials//
134