Page 133 - dysertaciyahembara
P. 133
81. Jothi S., Croft .TN., Brown S.G.R. Multiscale multiphysics model for
hydrogen embrittlement in polycrystalline nickel// Journal of Alloys and
Compounds. 2015; 645: S500-S504.
82. Solanki K.N., Ward D.K., Bammann D.J. A Nanoscale Study of
Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System//
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials
Science. 2011;42A(2) p. 340-347.
83. Jothi S., Croft T.N., Wright L., Turnbull A., Brown S.G.R. Multi-
phase modelling of intergranular hydrogen segregation/trapping for hydrogen
embrittlement// International Journal of Hydrogen Energy. 2015; 40(43)
p. 15105-15123.
84. Jothi S., Winzer N., Croft T.N., Brown S.G.R. Meso-microstructural
computational simulation of the hydrogen permeation test to calculate
intergranular, grain boundary and effective diffusivities// Journal of Alloys and
Compounds. 2015; 645 p. 247-251.
85. Kumar B.S., Kain V., Singh M., Vishwanadh B. Influence of hydrogen
on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless
steel// Materials Science and Engineering a-Structural Materials Properties
Microstructure and Processing. 2017; 700) p. 140-151.
86. Fan Y.H., Zhang B., Yi. H.L., Hao G.S., Sun Y.Y., Wang J.Q., et al.
The role of reversed austenite in hydrogen embrittlement fracture of S41500
martensitic stainless steel// Acta Materialia. 2017; 139) p. 188-195.
87. Hu Y.B., Dong C.F., Luo H., Xiao K., Zhong P., Li X.G. Study on the
Hydrogen Embrittlement of Aermet100 Using Hydrogen Permeation and SSRT
Techniques// Metallurgical and Materials Transactions a-Physical Metallurgy
and Materials Science. 2017; 48A(9) p. 4046-57.
88. Ogawa Y., Yamabe J., Matsunaga H., Matsuoka S. Material
performance of age-hardened beryllium copper alloy, CDA-C17200, in a high-
pressure, gaseous hydrogen environment// International Journal of Hydrogen
Energy. 2017; 42(26) p. 16887-16900.
133