Page 131 - dysertaciyahembara
P. 131
advanced high-strength steels for auto construction// Corrosion Reviews. 2016;
34(3) p. 127-152.
64. Liu Q., Atrens A. A critical review of the influence of hydrogen on the
mechanical properties of medium-strength steels// Corrosion Reviews. 2013;
31(3-6) p. 85-103.
65. Escobar D.P., Verbeken K., Duprez L., Verhaege M. Evaluation of
hydrogen trapping in high strength steels by thermal desorption spectroscopy//
Materials Science and Engineering: A. 2012; 551 p. 50-58.
66. Alvaro A., Jensen I.T., Kheradmand N., Løvvik O.M., Olden V.
Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive
zone simulation and nanomechanical testing// International journal of hydrogen
energy. 2015 ;40(47) p. 16892-16900.
67. Jiang D.E., Carter E.A. First principles assessment of ideal fracture
energies of materials with mobile impurities: implications for hydrogen
embrittlement of metals// Acta materialia. 2004; 52(16) p. 4801-4807.
68. Jiang D.E., Carter E.A. Diffusion of interstitial hydrogen into and
through bcc Fe from first principles// Physical Review B. 2004; 70(6) p. 064102.
69. Song J., Curtin W.A. Atomic mechanism and prediction of hydrogen
embrittlement in iron// Nature materials. 2013; 12(2) p. 145-51.
70. Hickel T., Nazarov R., McEniry E.J., Leyson G., Grabowski B.,
Neugebauer J. Ab initio based understanding of the segregation and diffusion
mechanisms of hydrogen in steels. Jom. 2014; 66(8) p. 1399-1405.
71. Counts W.A., Wolverton C., Gibala R. First-principles energetics of
hydrogen traps in α-Fe: Point defects// Acta Materialia. 2010; 58(14) p. 4730-
4741.
72. Yu H, Olsen J.S., Olden V., Alvaro A., He J., Zhang Z. Cohesive zone
simulation of grain size and misorientation effects on hydrogen embrittlement in
nickel// Engineering Failure Analysis. 2017; 81 p. 79-93.
131