Page 271 - Microsoft Word - Дисертація.docx
P. 271
271
57. Forgy, E. Cluster analysis of multivariate data: efficiency vs.
interpretability of classifications / E. Forgy // Biometrics. – 1965. – Vol. 21. – P.
768 – 780.
58. Selim, S. K-means-type algorithms: a generalized convergence
theorem and characterization of local optimality / S. Selim, M. Ismail // IEEE
Trans. on Patt. Anal. and Machine Intelligence. – 1984. – Vol. 6. – Is. 1. – P. 81
– 87.
59. Xu, R. Clustering / R. Xu, D. C. II Wunch. – N.Y.: John Wiley &
Sons, 2009. – 358 p.
60. Jain, A.K. Data clustering: 50 years beyond K-means / A.K. Jain //
Patt. Recogn. Lett. – 2010. – Vol. 31. – Is. 8. – P. 651 – 666.
61. Boykov Y. Graph cuts and efficient N–D image segmentation / Y.
Boykov, G. Funka–Lea. // Int. J. of Computer Vision. – 2006. – №2. – P. 109–
131.
62. Jermyn I. H. Globally optimal regions and boundaries as minimum
ratio weight cycles / I. H. Jermyn, H. Ishikawa. // IEEE Transactions on Pattern
Analysis and Machine Intelligence. – 2001. – №10. – P. 1075–1088.
63. Wang S. Image segmentation with ratio cut / S. Wang, J. M.
Siskind. // IEEE Transactions on Pattern Analysis and Machine Intelligence. –
2003. – №6. – P. 675– 690.
64. Sharon E. Fast multiscale image segmentation / E. Sharon, A.
Brandt, R. Basri. // Conference on Computer Vision and Pattern Recognition:
Proceedings of the IEEE International Conference, (13-15 Jun 2000; Hilton
Head Island, SC). – Hilton Head Island, SC, 2000. – P. 70 – 77.
65. Boykov Y. Computing geodesics and minimal surfaces via graph
cuts / Y. Boykov, V. Kolmogorov // 9th IEEE Int. Conf. on Computer Vision:
Procceding of the International Conference, (14–17 October 2003; Nice,
France).– Nice , 2003. – P. 26–33.
66. Kolmogorov V. What metrics can be approximated by geo–cuts, or
global optimization of length/area and flux / V. Kolmogorov, Y. Boykov // 10th