Page 271 - Microsoft Word - Дисертація.docx
P. 271

271

                      57.       Forgy,  E.  Cluster  analysis  of  multivariate  data:  efficiency  vs.

                  interpretability of classifications / E. Forgy // Biometrics. – 1965. – Vol. 21. – P.
                  768 – 780.


                      58.       Selim,  S.  K-means-type  algorithms:  a  generalized  convergence
                  theorem and characterization of local optimality / S. Selim, M. Ismail // IEEE


                  Trans. on Patt. Anal. and Machine Intelligence. – 1984. – Vol. 6. – Is. 1. – P. 81
                  – 87.


                      59.       Xu, R. Clustering / R. Xu, D. C. II Wunch. – N.Y.: John Wiley &

                  Sons, 2009. – 358 p.

                      60.        Jain, A.K. Data clustering: 50 years beyond K-means / A.K. Jain //

                  Patt. Recogn. Lett. – 2010. – Vol. 31. – Is. 8. – P. 651 – 666.

                      61.       Boykov Y. Graph cuts and efficient N–D image segmentation / Y.

                  Boykov, G. Funka–Lea. // Int. J. of Computer Vision. – 2006. – №2. – P. 109–

                  131.

                      62.       Jermyn I. H. Globally optimal regions and boundaries as minimum

                  ratio weight cycles / I. H. Jermyn, H. Ishikawa. // IEEE Transactions on Pattern

                  Analysis and Machine Intelligence. – 2001. – №10. – P. 1075–1088.

                      63.       Wang  S.  Image  segmentation  with  ratio  cut  /  S.  Wang,  J.  M.

                  Siskind. // IEEE Transactions on Pattern Analysis and Machine Intelligence. –

                  2003. – №6. – P. 675– 690.

                      64.       Sharon  E.  Fast  multiscale  image  segmentation  /  E.  Sharon,  A.

                  Brandt, R. Basri. // Conference on Computer Vision and Pattern Recognition:

                  Proceedings  of  the  IEEE  International  Conference,  (13-15  Jun  2000;  Hilton

                  Head Island, SC). – Hilton Head Island, SC, 2000. – P. 70 – 77.

                      65.       Boykov Y. Computing geodesics and minimal surfaces via graph

                  cuts / Y. Boykov, V. Kolmogorov // 9th IEEE Int. Conf. on Computer Vision:

                  Procceding  of  the  International  Conference,  (14–17  October  2003;  Nice,

                  France).– Nice , 2003. – P. 26–33.

                      66.       Kolmogorov V. What metrics can be approximated by geo–cuts, or

                  global optimization of length/area and flux / V. Kolmogorov, Y. Boykov  // 10th
   266   267   268   269   270   271   272   273   274   275   276