Page 164 -
P. 164
synthesized by reactive ball milling in hydrogen. Int. J. Hydrogen Energy 43(34),
16804–16814 (2018). doi: 10.1016/j.ijhydene.2018.05.091
49. Liu, P., Chen, H., Yu, H., Liu, X., Jiang, R., Li, X., Zhou, S.: Oxygen vacancy in
magnesium/cerium composite from ball milling for hydrogen storage improve-
ment. Int. J. Hydrogen Energy 44(26), 13606–13612 (2019). doi:
10.1016/j.ijhydene.2019.03.258
50. Dehouche, Z., Klassen, T., Oelerich, W., Goyette, J., Bose, T.K., Schulz, R.: Cy-
cling and thermal stability of nanostructured MgH –Cr O composite for hydro-
2
3
2
gen storage. J. Alloys Comp. 347(1–2), 319–323 (2002). doi: 10.1016/S0925-
8388(02)00784-3
51. Wang, P., Wang, A.M., Zhang, H.F., Ding, B.Z., Hu, Z.Q.: Hydrogenation char-
acteristics of Mg–TiO (rutile) composite. J. Alloys Comp. 313(1–2), 218–223
2
(2000). doi: 10.1016/S0925-8388(00)01188-9
52. Polanski, M., Bystrzycki, J.: Comparative studies of the influence of different
nano-sized metal oxides on the hydrogen sorption properties of magnesium hy-
dride. J. Alloys Comp. 486(1–2), 697–701 (2009). doi:
10.1016/j.jallcom.2009.07.042
53. Pandey, S., Bhatnagar, A., Shahi, R., Hudson, M.S., Singh, M., Srivastava, O.N.:
Effect of TiO Nanoparticles on the Hydrogen Sorption Characteristics of Magne-
2
sium Hydride. J. Nanoscience Nanotechnology 13, 5493–5499 (2013). doi:
10.1166/jnn.2013.7516
54. Daryani, M., Simchi, A., Sadati, M., Mdaah Hosseini, H., Targholizadeh, H.: Ef-
fects of Ti-based catalysts on hydrogen desorption kinetics of nanostructured
magnesium hydride. Int. J. Hydrogen Energy 39(36), 21007–21014 (2014). doi:
10.1016/j.ijhydene.2014.10.078
55. Hussain, T., Maark, A., Chakraborty, S., Ahuja, R.: Improvement in Hydrogen
Desorption from β- And γ-MgH upon Transition-Metal Doping. Chem. Phys.
2
Chem. 16(12), 2557–2561 (2015) doi: 10.1002/cphc.201500238
56. Maddah, M., Rajabi, M., Rabiee, S.M.: Hydrogen Desorption Properties of Nano-
crystalline MgH -10wt.%ZrB Composite Prepared by Mechanical Alloying. J.
2
2
164