Page 163 -
P. 163

dride  (MgH )  without  and  with  Cr O   nanoparticles.  Int.  J.  Hydrogen  Energy
                                                                3
                                                             2
                                 2
                   33(7), 1859–1867 (2008). doi: 10.1016/j.ijhydene.2008.01.043
                40. Oelerich, W., Klassen, T., Bormann, R.: Metal oxides as catalysts for improved

                   hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Comp. 315,

                   237–242 (2001). doi: 10.1016/S0925-8388(00)01284-6

                41. Aguey-Zinsou, K.-F., Nicolaisen, T., Ares Fernandez, J.R., et al.: Effect of na-


                   nosized oxides on MgH  (de)hydriding kinetics. J. Alloys Comp. 434/435, 738–
                                               2
                   742 (2007). doi: 10.1016/j.jallcom.2006.08.137


                42. Webb,  C.J.:  A  review  of  catalyst-enhanced  magnesium  hydride  as  a  hydrogen
                   storage  material.  J.  Phys.  Chem.  Solids  84,  96–106  (2015).  doi:


                   10.1016/j.jpcs.2014.06.014
                43. Chen, M., Wang, Y., Xiao, X., et al.: Highly efficient ZrH  nanocatalyst for the
                                                                                       2

                   superior  hydrogenation  kinetics  of  magnesium  hydride  under  moderate  condi-

                   tions:  Investigation  and  mechanistic  insights.  Appl.  Surf.  Sci.  541,  148375

                   (2021). doi: 10.1016/j.apsusc.2020.148375

                44. Sun, Z., Lu, X., Nyahuma, F.M., et al.: Enhancing Hydrogen Storage Properties

                   of  MgH   by  Transition  Metals  and  Carbon  Materials:  A  Brief  Review.  Front.
                             2
                   Chem. 8, 2020. doi: 10.3389/fchem.2020.00552

                45. Liang, G., Huot, J., Boily, S., Van Neste, A., Schulz, R.: Catalytic effect of transi-

                   tion  metals  on  hydrogen  sorption  in  nanocrystalline  ball  milled  MgH –Tm
                                                                                                         2
                   (Tm=Ti, V, Mn, Fe, and Ni) systems. J. Alloys Comp. 292(1–2), 247–252 (1999).

                   doi: 10.1016/S0925-8388(99)00442-9

                46. Kral, L., & Cermak, J.: Improvement of hydrogen storage properties of Mg by

                   catalytic  effect of  Al-containing phases in  Mg-Al-Ti-Zr-C  powders.  Int. J. Hy-

                   drogen Energy 44(26), 13561–13568 (2019). doi: 10.1016/j.ijhydene.2019.03.188

                47. Zhou, C., Li, C., Li, Y., Zhang, Q.: Enhanced hydrogen storage kinetics of an

                   Mg–Pr–Al composite by in situ formed Pr Al  nanoparticles. Dalton Trans. 48,
                                                                    3
                                                                        11
                   7735–7742 (2019). doi: 10.1039/C9DT01214A

                48. Korablov,  D.,  Besenbacher,  F.,  Jensen,  T.R.:  Kinetics  and  thermodynamics  of

                   hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb, or V) composites



                                                                                                            163
   158   159   160   161   162   163   164   165   166   167   168