Page 336 - dyser_Stankevych
P. 336
336
158. Иванов В. И. Применение метода АЭ для неразрушающего контроля и
исследования материалов (обзор основных проблем и задач). Дефектоскопия.
1980. № 5. С. 65–84.
159. Vanniamparambil P. A., Guclu U., Kontsos A. Identification of crack initiation
in aluminum alloys using acoustic emission. Experimental Mechanics. 2015. 55(5).
P. 837–850.
160. Kostryzhev A. G., Punch R. B., Davis C. L., Strangwood M. Acoustic emission
monitoring of split formation during charpy impact testing of high strength steel. URL:
http://ro.uow.edu.au/eispapers/2936 (дата звернення: 15.05.2017).
161. Теоретические концепции метода акустической эмиссии в исследовании
процессов разрушения / Андрейкив А. Е., и др. Препр. / АН УССР. Физ.-мех. ин-т;
№ 137. Львов, 1987. 49 с.
162. Lysak M. V. Acoustic emission during jumps in subcritical growth of crack in
three-dimensional bodies. Engineering Fracture Mechanics. 1994. 47(6). P. 873–879.
163. Friesel M. A. Acoustic emission source identification using longwaveguide
sensors. NDT&International. 1996. 19(3). P. 203–206
164. Effect of grain size on the mechanisms of plastic deformation in wrought Mg–
Zn–Zr alloy revealed by acoustic emission measurements / Vinogradov A., et al. Acta
Materialia. 2013. 61(6). P. 2044–2056.
165. Characterization of initial activation behavior for hydrogen storage alloys by
acoustic emission technique / Inoue H., et al. Journal of Alloys and Compounds. 2007.
446–447. P. 681–686.
166. Hase A., Mishina H., Wada M. Correlation between features of acoustic emission
signals and mechanical wear mechanisms. Wear. 2012. 292–293. P. 144–150.
167. Identification of fretting fatigue crack propagation mechanisms using acoustic
emission / Meriaux J., et al. Tribology International. 2010. 43(11). P. 2166–2174
168. Characterization of fatigue damage in 304L steel by an acoustic emission me-
thod / Ould Amer A., et al. Procedia Engineering. 2013. 66. P. 651–660.